Optica Open
Browse
arXiv.svg (5.58 kB)

Chromatin Laser Imaging Reveals Abnormal Nuclear Changes for Early Cancer Detection

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:03 authored by Yu-Cheng Chen, Qiushu Chen, Xiaotain Tan, Grace Chen, Ingrid Bergin, Muhammad Nadeem Aslam, Xudong Fan
We developed and applied rapid scanning laser-emission microscopy to detect abnormal changes in cell nuclei for early diagnosis of cancer and cancer precursors. Regulation of chromatins is essential for genetic development and normal cell functions, while abnormal nuclear changes may lead to many diseases, in particular, cancer. The capability to detect abnormal changes in apparently normal tissues at a stage earlier than tumor development is critical for cancer prevention. Here we report using LEM to analyze colonic tissues from mice at-risk for colon cancer by detecting prepolyp nuclear abnormality. By imaging the lasing emissions from chromatins, we discovered that, despite the absence of observable lesions, polyps, or tumors under stereoscope, high-fat mice exhibited significantly lower lasing thresholds than low-fat mice. The low lasing threshold is, in fact, very similar to that of adenomas and is caused by abnormal cell proliferation and chromatin deregulation that can potentially lead to cancer. Our findings suggest that conventional methods, such as colonoscopy, may be insufficient to reveal hidden or early tumors under development. We envision that this work will provide new insights into LEM for early tumor detection in clinical diagnosis and fundamental biological and biomedical research of chromatin changes at the biomolecular level of cancer development.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC