Optica Open
Browse

Classical entanglement underpins the propagation invariance of space-time wave packets

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:48 authored by H. Esat Kondakci, Miguel A. Alonso, Ayman F. Abouraddy
Space-time wave packets are propagation-invariant pulsed beams that travel in free space without diffraction or dispersion by virtue of tight correlations introduced into their spatio-temporal spectrum. Such correlations constitute an embodiment of classical entanglement between continuous degrees of freedom. Using a measure of classical entanglement based on the Schmidt number of the field, we demonstrate theoretically and experimentally that the degree of classical entanglement determines the diffraction-free propagation distance of ST wave packets. Reduction in the degree of classical entanglement manifests itself in an increased uncertainty in the measured spatio-temporal spectral correlations.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC