Optica Open
Browse

Coherent Plasmonic Absorption in the Femtosecond Regime

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:26 authored by Venkatram Nalla, Xu Fang, João Valente, Handong Sun, Nikolay I Zheludev
Dissipation of electromagnetic energy through absorption is a fundamental process that underpins phenomena ranging from photovoltaics to photography, analytical spectroscopy, photosynthesis, and human vision. Absorption is also a dynamic process that depends on the duration of the optical illumination. Here we report on the resonant plasmonic absorption of a nanostructured metamaterial and the non-resonant absorption of an unstructured gold film at different optical pulse durations. By examining the absorption in travelling and standing waves, we observe a plasmonic relaxation time of 11 fs as the characteristic transition time. The metamaterial acts as a beam-splitter with low absorption for shorter pulses, while as a good absorber for longer pulses. The transient nature of the absorption puts a frequency limit of ~90 THz on the bandwidth of coherently-controlled, all-optical switching devices, which is still a thousand times faster than other leading switching technologies.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC