Optica Open
Browse

Coherent control of acoustic phonons in a silica fiber using a multi-GHz optical frequency comb

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:42 authored by Mamoru Endo, Shota Kimura, Shuntaro Tani, Yohei Kobayashi
Multi-gigahertz mechanical vibrations stemming from interactions between light fields and matter, also known as acoustic phonons, have long been a subject of study. In recent years, specially designed functional devices have been developed to enhance the light-matter interaction strength, since the excitation of acoustic phonons by a continuous wave laser alone is insufficient. However, with such structure-dependent enhancements, the strength of the interaction cannot be aptly and instantly controlled. We propose a new technique to control the effective interaction strength, which is not via the material structure in the spatial domain, as with the above-mentioned specially designed functional devices, but through the structure of light in the time domain. Here we show the effective excitation and coherent control of acoustic phonons in a single-mode fiber using an optical frequency comb by tailoring the optical pulse train. We believe this work represents an important step towards "comb-matter interactions."

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC