Optica Open
Browse

Coherent control of quantum topological states of light in Fock-state lattices

Download (5.58 kB)
Version 2 2023-06-08, 12:57
Version 1 2023-01-10, 02:44
preprint
posted on 2023-06-08, 12:57 authored by Jinfeng Deng, Hang Dong, Chuanyu Zhang, Yaozu Wu, Jiale Yuan, Xuhao Zhu, Feitong Jin, Hekang Li, Zhen Wang, Han Cai, Chao Song, H. Wang, J. Q. You, Da-Wei Wang
Topological photonics provides a novel platform to explore topological physics beyond traditional electronic materials and stimulates promising applications in topologically protected light transport and lasers. Classical degrees of freedom such as polarizations and wavevectors are routinely used to synthesize topological light modes. Beyond the classical regime, inherent quantum nature of light gives birth to a wealth of fundamentally distinct topological states, which offer topological protection in quantum information processing. Here we implement such experiments on topological states of quantized light in a superconducting circuit, on which three resonators are tunably coupled to a gmon qubit. We construct one and two-dimensional Fock-state lattices where topological transport of zero-energy states, strain induced pseudo-Landau levels, valley Hall effect and Haldane chiral edge currents are demonstrated. Our study extends the topological states of light to the quantum regime, bridges topological phases of condensed matter physics with circuit quantum electrodynamics, and offers a new freedom in controlling the quantum states of multiple resonators.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC