Optica Open
Browse

Coherent satellites in multi-spectral regenerative frequency microcombs

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:16 authored by Jinghui Yang, Shu-Wei Huang, Zhenda Xie, Mingbin Yu, Dim-Lee Kwong, Chee Wei Wong
Multi-spectral frequency combs provide frontier architectures for laser standoff spectroscopy, optical clockwork, and high-capacity optical communications. Frequency microcombs, aided by their high-quality resonances and inherent third-order nonlinear susceptibility, have demonstrated remarkable impact in frequency metrology and synthesis. However, microcombs are often with limited spectral bandwidth bounded by the intrinsic second-order chromatic dispersion and the consequently low intensities at the spectral edges. To enhance the applications of frequency combs, a spectrally-broad comb generation scheme is often desired. Here we report coherent satellite clusters in multi-spectral regenerative frequency microcombs with enhanced intensities at the octave points and engineered frequency span. Beyond the conventional bandwidth of parametric oscillation, the regenerative satellites are facilitated by higher-order dispersion control allowing for multi-phase-matching in the microcavities. The frequency span of the multi-spectral regenerative satellites is deterministically controlled from 57 THz to 126 THz by pumping at C- and L- bands. We demonstrate that the regenerative satellite preserves the coherence with the central comb through the nonlinear parametric process. We further show the mirrored appearance of the satellite transition dynamics including each comb state that are simultaneously observed at the central comb. These multi-spectral regenerative satellites extend the scope of parametric-based frequency combs and provide a unique platform with wide applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC