Optica Open
Browse

Collective plasmonic modes in the chiral multifold fermionic material CoSi

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:09 authored by Debasis Dutta, Barun Ghosh, Bahadur Singh, Hsin Lin, Antonio Politano, Arun Bansil, Amit Agarwal
Plasmonics in topological semimetals offers exciting opportunities for fundamental physics exploration as well as for technological applications. Here, we investigate plasmons in the exemplar chiral crystal CoSi, which hosts a variety of multifold fermionic excitations. We show that CoSi hosts two distinct plasmon modes in the infrared regime at 0.1 eV and 1.1 eV in the long-wavelength limit. The 0.1 eV plasmon is found to be highly dispersive, and originates from intraband collective oscillations associated with a double spin-1 excitation, while the 1.1 eV plasmon is dispersionless and it involves interband correlations. Both plasmon modes lie outside the particle-hole continuum and possess long lifetime. Our study indicates that the CoSi class of materials will provide an interesting materials platform for exploring fundamental and technological aspects of topological plasmonics.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC