Optica Open
Browse
- No file added yet -

Colloidal transport in twisted lattices of optical tweezers

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:43 authored by Nico C. X. Stuhlmüller, Thomas M. Fischer, Daniel de las Heras
We simulate the transport of colloidal particles driven by a static and homogeneous drift force, and subject to the optical potential created by two lattices of optical tweezers. The lattices of optical tweezers are parallel to each other, shifted, and rotated by a twist angle. Due to a negative interference between the potential of the two lattices, flat channels appear in the total optical potential. At specific twist angles, known as magic-angles, the flat channels percolate the entire system and the colloidal particles can then be transported using a weak external drift force. We characterize the transport in both square and hexagonal lattices of twisted optical tweezers

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC