Optica Open
Browse

Colorful Optical Vortices with White Light Illumination

Download (5.58 kB)
Version 2 2023-06-08, 12:57
Version 1 2023-01-12, 15:56
preprint
posted on 2023-06-08, 12:57 authored by Hongtao Wang, Hao Wang, Qifeng Ruan, John You En Chan, Wang Zhang, Hailong Liu, Soroosh Daqiqeh Rezaei, Jonathan Trisno, Cheng-Wei Qiu, Min Gu, Joel K. W. Yang
The orbital angular momentum (OAM) of light holds great promise for applications in optical communication, super-resolution imaging, and high-dimensional quantum computing. However, the spatio-temporal coherence of the light source has been essential for generating OAM beams, as incoherent ambient light would result in polychromatic and obscured OAM beams in the visible spectrum. Here, we extend the applications of OAM to ambient lighting conditions. By miniaturizing spiral phase plates and integrating them with structural color filters, we achieve spatio-temporal coherence using only an incoherent white light source. These optical elements act as building blocks that encode both color and OAM information in the form of colorful optical vortices. Thus, pairs of transparent substrates that contain matching positions of these vortices constitute a reciprocal optical lock and key system. Due to the multiple helical eigenstates of OAM, the pairwise coupling can be further extended to form a one-to-many matching and validation scheme. Generating and decoding colorful optical vortices with broadband white light could find potential applications in anti-counterfeiting, optical metrology, high-capacity optical encryption, and on-chip 3D photonic devices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC