Optica Open
arXiv.svg (5.58 kB)

Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode

Download (5.58 kB)
posted on 2023-11-30, 18:19 authored by Pablo Marin-Palomo, Juned N. Kemal, Philipp Trocha, Stefan Wolf, Kamel Merghem, François Lelarge, Abderrahim Ramdane, Wolfgang Freude, Sebastian Randel, Christian Koos
Chip-scale frequency comb generators have the potential to become key building blocks of compact wavelength-division multiplexing (WDM) transceivers in future metropolitan or campus-area networks. Among the various comb generator concepts, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out as a particularly promising option, combining small footprint with simple operation by a DC current and offering flat broadband comb spectra. However, the data transmission performance achieved with QD-MLLD was so far limited by strong phase noise of the individual comb tones, restricting experiments to rather simple modulation formats such as quadrature phase shift keying (QPSK) or requiring hard-ware-based compensation schemes. Here we demonstrate that these limitations can be over-come by digital symbol-wise phase tracking algorithms, avoiding any hardware-based phase-noise compensation. We demonstrate 16QAM dual-polarization WDM transmission on 38 channels at an aggregate net data rate of 10.68 Tbit/s over 75 km of standard single-mode fiber. To the best of our knowledge, this corresponds to the highest data rate achieved through a DC-driven chip-scale comb generator without any hardware-based phase-noise reduction schemes.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics



    Ref. manager