Optica Open
Browse
arXiv.svg (5.58 kB)

Compact lithium niobate photonic integrated circuits

Download (5.58 kB)
preprint
posted on 2023-03-04, 17:01 authored by Yan Gao, Fuchuan Lei, Marcello Girardi, Zhichao Ye, Raphaël Van Laer, Victor Torres-Company, Jochen Schröder
Lithium niobate (LN) is a promising material for future complex photonic-electronic circuits, with wide applications in fields like communications, sensing, quantum optics, and computation. LN took a great stride toward compact photonic integrated circuits (PICs) with the development of partially-etched LN on insulator (LNOI) waveguides. However, integration density is still limited for future high-compact PICs due to the partial edge nature of their waveguides. Here, we demonstrate a fully-etched LN PIC platform which, for the first time, simultaneously achieves ultra-low propagation loss and compact circuit size. The tightly-confined fully-etched LN waveguides with smooth sidewalls allow us to bring the bending radius down to 20 $\mu$m (corresponds to 1 THz FSR). We have achieved compact high-$Q$ microring resonators with $Q/V$ of 7.1 $\times$ 10$^{4}$ $\mu$m$^{-3}$, almost one order of magnitude larger than previous demonstrations. The statistical mean propagation losses of our LN waveguides is 8.5 dB/m (corresponds to mean $Q$-factor of 4.9 $\times$ 10$^{6}$) even with a small bending radius of 40 $\mu$m. Our compact and ultra-low-loss LN platform shows great potential in future miniaturized multifunctional integration systems. As complementary evidence to show the utility of our platform, we demonstrate soliton microcombs with an ultra-high repetition rate of 500 GHz in LN.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC