posted on 2023-11-30, 05:19authored byRodrigo Gutiérrez-Cuevas, Miguel A. Alonso
Complete bases that are useful for beam propagation problems and that present the distinct property of being spatially confined at the initial plane are proposed. These bases are constructed in terms of polynomials of Gaussians, in contrast with standard alternatives such as the Hermite-Gaussian basis that are given by a Gaussian times a polynomial. The property of spatial confinement implies that, for all basis elements, the spatial extent at the initial plane is roughly the same. This property leads to an optimal scaling parameter that is independent of truncation order for the fitting of a confined initial field. Given their form as combinations of Gaussians, the paraxial propagation of these basis elements can be modeled analytically.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.