Optica Open
Browse

Compressive spectral image classification using 3D coded convolutional neural network

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:38 authored by Hao Zhang, Xu Ma, Xianhong Zhao, Gonzalo R. Arce
Hyperspectral image classification (HIC) is an active research topic in remote sensing. Hyperspectral images typically generate large data cubes posing big challenges in data acquisition, storage, transmission and processing. To overcome these limitations, this paper develops a novel deep learning HIC approach based on compressive measurements of coded-aperture snapshot spectral imagers (CASSI), without reconstructing the complete hyperspectral data cube. A new kind of deep learning strategy, namely 3D coded convolutional neural network (3D-CCNN) is proposed to efficiently solve for the classification problem, where the hardware-based coded aperture is regarded as a pixel-wise connected network layer. An end-to-end training method is developed to jointly optimize the network parameters and the coded apertures with periodic structures. The accuracy of classification is effectively improved by exploiting the synergy between the deep learning network and coded apertures. The superiority of the proposed method is assessed over the state-of-the-art HIC methods on several hyperspectral datasets.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC