Optica Open
Browse
- No file added yet -

Computational ghost imaging using deep learning

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:30 authored by Tomoyoshi Shimobaba, Yutaka Endo, Takashi Nishitsuji, Takayuki Takahashi, Yuki Nagahama, Satoki Hasegawa, Marie Sano, Ryuji Hirayama, Takashi Kakue, Atsushi Shiraki, Tomoyoshi Ito
Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three- dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC