Optica Open
Browse

Computationally Efficient Nanophotonic Design through Data-Driven Eigenmode Expansion

Download (5.58 kB)
preprint
posted on 2024-07-17, 16:00 authored by Mehmet Can Oktay, Emir Salih Magden
Growing diversity and complexity of on-chip photonic applications requires rapid design of components with state-of-the-art operation metrics. Here, we demonstrate a highly flexible and efficient method for designing several classes of compact and low-loss integrated optical devices. By leveraging a data-driven approach, we represent devices in the form of cascaded eigenmode scattering matrices, through a data-driven eigenmode expansion method. We perform electromagnetic computations using parallel data processing techniques, demonstrating simulation of individual device responses in tens of milliseconds with physical accuracies matching 3D-FDTD. We then couple these simulations with nonlinear optimization algorithms to design silicon-based waveguide tapers, power splitters, and waveguide crossings with state-of-the-art performance and near-lossless operation. These three sets of devices highlight the broad computational efficiency of the design methodology shown, and the applicability of the demonstrated data-driven eigenmode expansion approach to a wide set of photonic design problems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC