Optica Open
Browse

Compute-first optical detection for noise-resilient visual perception

Download (5.58 kB)
preprint
posted on 2024-03-16, 16:00 authored by Jungmin Kim, Nanfang Yu, Zongfu Yu
In the context of visual perception, the optical signal from a scene is transferred into the electronic domain by detectors in the form of image data, which are then processed for the extraction of visual information. In noisy and weak-signal environments such as thermal imaging for night vision applications, however, the performance of neural computing tasks faces a significant bottleneck due to the inherent degradation of data quality upon noisy detection. Here, we propose a concept of optical signal processing before detection to address this issue. We demonstrate that spatially redistributing optical signals through a properly designed linear transformer can enhance the detection noise resilience of visual perception tasks, as benchmarked with the MNIST classification. Our idea is supported by a quantitative analysis detailing the relationship between signal concentration and noise robustness, as well as its practical implementation in an incoherent imaging system. This compute-first detection scheme can pave the way for advancing infrared machine vision technologies widely used for industrial and defense applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC