Optica Open
Browse
- No file added yet -

Concept of Inverted Refractive-Index-Contrast Grating Mirror and Exemplary Fabrication by 3D Microprinting

Download (5.58 kB)
preprint
posted on 2023-02-16, 17:01 authored by Emilia Pruszyńska-Karbownik, Daniel Jandura, Maciej Dems, Łukasz Zinkiewicz, Artur Broda, Marcin Gȩbski, Jan Muszalski, Dusan Pudis, Jan Suffczyński, Tomasz Czyszanowski
Highly reflective mirrors are indispensable components in a variety of state-of-the-art photonic devices. Typically used, bulky, multi-layered distributed Bragg (DBR) reflectors are limited to lattice-matched semiconductors or nonconductive dielectrics. Here, we introduce an inverted refractive-index-contrast grating (ICG), as compact, single layer alternative to DBR. In the ICG, a subwavelength one-dimensional grating made of a low refractive index material is implemented on a high refractive index cladding. Our numerical simulations show that the ICG provides nearly total optical power reflectance for the light incident from the side of the cladding whenever the refractive index of the grating exceeds 1.75, irrespective of the refractive index of the cladding. Additionally, the ICG enables polarization discrimination and phase tuning of the reflected and transmitted light, the property not achievable with the DBR. We experimentally demonstrate a proof-of-concept ICG fabricated according to the proposed design, using the technique of 3D microprinting in which thin stripes of IP-Dip photoresist are deposited on a Si cladding. This one-step method avoids laborious and often destructive etching-based procedures for grating structuration, making it possible to implement the grating on any arbitrary cladding material.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC