posted on 2023-12-21, 09:46authored bySimone Lauria, Mohammed Saleh
We present a novel implementation of conditional Long Short-Term Memory Recurrent Neural Networks that successfully predict the spectral evolution of a pulse in nonlinear periodically-poled waveguides. The developed networks offer large flexibility by allowing the propagation of optical pulses with range of energies and temporal widths in waveguides with different poling periods. The results show very high agreement with the traditional numerical models. Moreover, we are able to use a single network to calculate both the real and imaginary parts of the pulse complex envelope, allowing for successfully retrieving the pulse temporal and spectral evolution using the same network.
History
Funder Name
Engineering and Physical Sciences Research Council