Optica Open
Browse
- No file added yet -

Controllable Spin-Resolved Photon Emission Enhanced by Slow-Light Mode in Photonic Crystal Waveguides on Chip

Download (5.58 kB)
Version 2 2023-06-08, 13:03
Version 1 2023-03-23, 16:01
preprint
posted on 2023-06-08, 13:03 authored by Shushu Shi, Shan Xiao, Jingnan Yang, Shulun Li, Xin Xie, Jianchen Dang, Longlong Yang, Danjie Dai, Bowen Fu, Sai Yan, Yu Yuan, Rui Zhu, Bei-Bei Li, Zhanchun Zuo, Can Wang, Haiqiao Ni, Zhichuan Niu, Kuijuan Jin, Qihuang Gong, Xiulai Xu
We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC