Optica Open
Browse

Coupling Perovskite Quantum Dot Pairs in Solution using Nanoplasmonic Assembly

Download (5.58 kB)
Version 2 2023-06-08, 12:56
Version 1 2023-01-12, 15:47
preprint
posted on 2023-06-08, 12:56 authored by Hao Zhang, Parinaz Moazzezi, Juanjuan Ren, Brett Henderson, Cristina Cordoba, Vishal Yeddu, Arthur M. Blackburn, Makhsud I. Saidaminov, Irina Paci, Stephen Hughes, Reuven Gordon
Perovskite quantum dots (PQDs) provide a robust solution-based approach to efficient solar cells, bright light-emitting devices, and quantum sources of light. Quantifying heterogeneity and understanding coupling between dots is critical for these applications. We use double-nanohole optical trapping to size individual dots and correlate to emission energy shifts from quantum confinement. We were able to assemble a second dot in the trap, which allows us to observe the coupling between dots. We observe a systematic red-shift of 1.1 $\pm$ 0.6 meV in the emission wavelength. Theoretical analysis shows that the observed shift is consistent with resonant energy transfer and is unusually large due to moderate-to-large quantum confinement in PQDs. This demonstrates the promise of PQDs for entanglement in quantum information applications. This work enables future in situ control of PQD growth as well as studies of the coupling between small PQD assemblies with quantum information applications in mind.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC