Optica Open
Browse

Crater-shaped Enrichment of $\mathrm{V}_\mathrm{Si}$ Color Centers in $4H$-SiC using Single-Pulse Near-Infrared Femtosecond Laser Processing

Download (5.58 kB)
preprint
posted on 2024-07-31, 16:00 authored by Mengzhi Yan, Junlei Zhao, Ying Song, Bing Dong, Yifei Duan, Jianshi Wang, Qingqing Sun, Zongwei Xu
Currently, Si vacancy ($\mathrm{V}_\mathrm{Si}$) color centers in SiC are of significant interest due to their potential applications in quantum sensing and quantum communication. Meanwhile, the qualities of laser-induced color centers are well guaranteed. Femtosecond laser processing suffices for increasing the yield of $\mathrm{V}_\mathrm{Si}$ color centers in bulk materials and forms crater-shaped enriched regions on the surface. However, there is a notable absence of existing simulation methods to explain the mechanisms behind laser-assisted $\mathrm{V}_\mathrm{Si}$ color center generation. In this work, we design a three-dimensional molecular dynamics (3D-MD) model using an integral hemi-ellipsoidal shell mathematical model to simulate the interaction of Gaussian laser beams with bulk materials. Furthermore, we calculate the transmittance, absorption coefficient, refractive index, and reflectivity of $4H$-SiC. Then, the absorptance of a 1030 nm laser in 350 {\mu}m-thick $4H$-SiC material is abtained to simulate the energy loss during the actual processing. Finally, the study analyzes the movement trajectories of $\mathrm{V}_\mathrm{Si}$ color centers and explains the source of $\mathrm{V}_\mathrm{Si}$ on the surface. This analysis explains the reasons for the enrichment of color centers in the crater-shaped regions formed after laser deposition. Our work provides an effective 3D-MD modeling approach to study the processing mechanisms of laser interaction with semiconductor materials, offering insights into efficient $\mathrm{V}_\mathrm{Si}$ color center creation processes.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC