Optica Open
Browse

Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates

Download (5.58 kB)
preprint
posted on 2023-01-11, 23:09 authored by Xiaohui Xu, Zachariah O. Martin, Demid Sychev, Alexei S. Lagutchev, Yong Chen, Takashi Taniguchi, Kenji Watanabe, Vladimir M. Shalaev, Alexandra Boltasseva
Two-dimensional hexagonal boron nitride (hBN) that hosts bright room-temperature single-photon emitters (SPEs) is a promising material platform for quantum information applications. An important step towards the practical application of hBN is the on-demand, position-controlled generation of SPEs. Several strategies have been reported to achieve the deterministic creation of hBN SPEs. However, they either rely on a substrate nanopatterning procedure that is not compatible with integrated photonic devices or utilize a radiation source that might cause unpredictable damage to hBN and underlying substrates. Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with an atomic force microscope (AFM) tip. The method is applied to thin hBN flakes (less than 25 nm in thickness) on flat silicon-dioxide-silicon substrates that can be readily integrated into on-chip photonic devices. The achieved SPEs yields are above 30% by utilizing multiple indent sizes, and a maximum yield of 36% is demonstrated for the indent size of around 400 nm. Our results mark an important step towards the deterministic creation and integration of hBN SPEs with photonic and plasmonic on-chip devices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC