Optica Open
Browse

Curriculum Learning for ab initio Deep Learned Refractive Optics

Download (5.58 kB)
preprint
posted on 2023-02-04, 17:01 authored by Xinge Yang, Qiang Fu, Wolfgang Heidrich
Deep lens optimization has recently emerged as a new paradigm for designing computational imaging systems, however it has been limited to either simple optical systems consisting of a single DOE or metalens, or the fine-tuning of compound lenses from good initial designs. Here we present a deep lens design method based on curriculum learning, which is able to learn optical designs of compound lenses ab initio from randomly initialized surfaces, therefore overcoming the need for a good initial design. We demonstrate this approach with the fully-automatic design of an extended depth-of-field computational camera in a cellphone-style form factor, highly aspherical surfaces, and a short back focal length.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC