Optica Open
Browse
arXiv.svg (5.58 kB)

Customising radiative decay dynamics of two-dimensional excitons via position- and polarisation-dependent vacuum-field interference

Download (5.58 kB)
Version 2 2023-06-08, 12:57
Version 1 2023-01-12, 16:01
preprint
posted on 2023-06-08, 12:57 authored by Sanghyeok Park, Dongha Kim, Yun-Seok Choi, Arthur Baucour, Donghyeong Kim, Sangho Yoon, Kenji Watanabe, Takashi Taniguchi, Jonghwa Shin, Jonghwan Kim, Min-Kyo Seo
Embodying bosonic and electrically interactive characteristics in two-dimensional space, excitons in transition-metal dichalcogenides (TMDCs) have garnered considerable attention. The realisation and application of strong-correlation effects, long-range transport, and valley-dependent optoelectronic properties require customising exciton decay dynamics. Strains, defects, and electrostatic doping effectively control the decay dynamics but significantly disturb the intrinsic properties of TMDCs, such as electron band structure and exciton binding energy. Meanwhile, vacuum-field manipulation provides an optical alternative for engineering radiative decay dynamics. Planar mirrors and cavities have been employed to manage the light-matter interactions of two-dimensional excitons. However, the conventional flat platforms cannot customise the radiative decay landscape in the horizontal TMDC plane or independently control vacuum field interference at different pumping and emission frequencies. Here, we present a meta-mirror resolving the issues with more optical freedom. For neutral excitons of the monolayer MoSe2, the meta-mirror manipulated the radiative decay rate by two orders of magnitude, depending on its geometry. Moreover, we experimentally identified the correlation between emission intensity and spectral linewidth. The anisotropic meta-mirror demonstrated polarisation-dependent radiative decay control. We expect that the meta-mirror platform will be promising to tailor the two-dimensional distributions of lifetime, density, and diffusion of TMDC excitons in advanced opto-excitonic applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC