Optica Open
Browse
arXiv.svg (5.58 kB)

De-scattering with Excitation Patterning (DEEP) Enables Rapid Wide-field Imaging Through Scattering Media

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:00 authored by Dushan N. Wadduwage, Jong Kang Park, Josiah R. Boivin, Yi Xue, Peter T. C. So
From multi-photon imaging penetrating millimeters deep through scattering biological tissue, to super-resolution imaging conquering the diffraction limit, optical imaging techniques have greatly advanced in recent years. Notwithstanding, a key unmet challenge in all these imaging techniques is to perform rapid wide-field imaging through a turbid medium. Strategies such as active wave-front correction and multi-photon excitation, both used for deep tissue imaging; or wide-field total-internal-refection illumination, used for super-resolution imaging; can generate arbitrary excitation patterns over a large field-of-view through or under turbid media. In these cases, throughput advantage gained by wide-field excitation is lost due to the use of point detection. To address this challenge, here we introduce a novel technique called De-scattering with Excitation Patterning, or 'DEEP', which uses patterned excitation followed by wide-field detection with computational imaging. We use two-photon temporal focusing (TFM) to demonstrate our approach at multiple scattering lengths deep in tissue. Our results suggest that millions of point-scanning measurements could be substituted with tens to hundreds of DEEP measurements with no compromise in image quality.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC