Optica Open
Browse

Deep-subwavelength Phase Retarders at Mid-Infrared Frequencies with van der Waals Flakes

Download (5.58 kB)
preprint
posted on 2023-07-08, 04:02 authored by Michael T. Enders, Mitradeep Sarkar, Aleksandra Deeva, Maxime Giteau, Hanan Herzig Sheinfux, Mehrdad Shokooh-Saremi, Frank H. L. Koppens, Georgia T. Papadakis
Phase retardation is a cornerstone of modern optics, yet, at mid-infrared (mid-IR) frequencies, it remains a major challenge due to the scarcity of simultaneously transparent and birefringent crystals. Most materials resonantly absorb due to lattice vibrations occurring at mid-IR frequencies, and natural birefringence is weak, calling for hundreds of microns to millimeters-thick phase retarders for sufficient polarization rotation. We demonstrate mid-IR phase retardation with flakes of $\alpha$-molybdenum trioxide ($\alpha$-MoO$_3$) that are more than ten times thinner than the operational wavelength, achieving 90 degrees polarization rotation within one micrometer of material. We report conversion ratios above 50% in reflection and transmission mode, and wavelength tunability by several micrometers. Our results showcase that exfoliated flakes of low-dimensional crystals can serve as a platform for mid-IR miniaturized integrated polarization control.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC