Optica Open
Browse
- No file added yet -

Defect-assisted reversible phase transition in mono- and few-layer ReS$_2$

Download (5.58 kB)
preprint
posted on 2024-05-23, 16:00 authored by George Zograf, Andrew B. Yankovich, Betül Küçüköz, Abhay V. Agrawal, Alexander Yu. Polyakov, Joachim Ciers, Fredrik Eriksson, Åsa Haglund, Paul Erhart, Tomasz J. Antosiewicz, Eva Olsson, Timur O. Shegai
Transition metal dichalcogenide (TMD) materials have attracted substantial interest due to their remarkable excitonic, optical, electrical, and mechanical properties, which are highly dependent on their crystal structure. Controlling the crystal structure of these materials is essential for fine-tuning their performance, $\textit{e.g.}$, linear and nonlinear optical, as well as charge transport properties. While various phase-switching TMD materials, like molybdenum telluride (MoTe$_2$), are available, their transitions are often irreversible. Here, we investigate the mechanism of a light-induced reversible phase transition in mono- and bilayer flakes of rhenium disulfide (ReS$_2$). Our observations, based on scanning transmission electron microscopy, nonlinear spectroscopy, and density functional theory calculations, reveal a transition from the ground T$''$ (double distorted T) to the metastable H$'$ (distorted H) phase under femtosecond laser irradiation or influence of highly-energetic electrons. We show that the formation of sulfur vacancies facilitates this phenomenon. Our findings pave the way towards actively manipulating the crystal structure of ReS$_2$ and possibly its heterostructures.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC