Optica Open
Browse

Depth-Targeted Energy Deposition Deep Inside Scattering Media

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:19 authored by Nicholas Bender, Alexey Yamilov, Arthur Goetschy, Hasan Yilmaz, Chia Wei Hsu, Hui Cao
A grand challenge in fundamental physics and practical applications is overcoming wave diffusion to deposit energy into a target region deep inside a diffusive system. While it is known that coherently controlling the incident wavefront allows diffraction-limited focusing inside a diffusive system, in many applications targets are significantly larger than such a focus and the maximum deliverable energy remains unknown. Here, we introduce the "deposition matrix", which maps an input wavefront to its internal field distribution, and theoretically predict the ultimate limitations on energy deposition at any depth. For example, the maximum obtainable energy enhancement occurs at 3/4 a diffusive system's thickness: regardless of its scattering strength. Experimentally we measure the deposition matrix and excite its eigenstates to enhance/suppress the energy within an extended target region. Our theoretical analysis reveals that such enhancement/suppression results from both selective transmission eigenchannel excitation and constructive/destructive interference among these channels.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC