Optica Open
Browse

Design and Optimization of Ellipsoid Scatterer-based Metasurfaces via the Inverse T-Matrix Method

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:52 authored by Maksym V. Zhelyeznyakov, Alan Zhan, Arka Majumdar
Large-area metasurfaces composed of discrete wavelength-scale scatterers present an extremely large number of degrees of freedom to engineer an optical element. These degrees of freedom provide tremendous design flexibility, and a central challenge in metasurface design is how to optimally leverage these degrees of freedom towards a desired optical function. Inverse design can be used to explore non-intuitive design space for metasurfaces. We report an inverse design method exploiting T-Matrix scattering of ellipsoidal scatterer based metasurfaces. Multifunctional, polarization multiplexed metasurfaces were designed using this approach. Finally, we apply this method to optimize the efficiency of an existing high numerical aperture (0.83)metalens design, and report an increase in efficiency from 26% to 32%

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC