Optica Open
Browse
- No file added yet -

Design considerations of photonic lanterns for diffraction-limited spectrometry

Download (5.58 kB)
preprint
posted on 2023-01-11, 23:05 authored by Jonathan Lin, Nemanja Jovanovic, Michael Fitzgerald
The coupling of large telescopes to astronomical instruments has historically been challenging due to the tension between instrument throughput and stability. Light from the telescope can either be injected wholesale into the instrument, maintaining high throughput at the cost of point-spread function (PSF) stability, or the time-varying components of the light can be filtered out with single-mode fibers (SMFs), maintaining instrument stability at the cost of light loss. Today, the field of astrophotonics provides a potential resolution to the throughput-stability tension in the form of the photonic lantern (PL): a tapered waveguide which can couple a time-varying and aberrated PSF into multiple diffraction-limited beams at an efficiency that greatly surpasses direct SMF injection. As a result, lantern-fed instruments retain the stability of SMF-fed instruments while increasing their throughput. To this end, we present a series of numerical simulations characterizing PL performance as a function of lantern geometry, wavelength, and wavefront error (WFE), aimed at guiding the design of future diffraction-limited spectrometers. These characterizations include a first look at the interaction between PLs and phase-induced amplitude apodization (PIAA) optics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC