Optica Open
Browse

Design of Energy-Efficient Cross-coupled Differential Photonic-SRAM (pSRAM) Bitcell for High-Speed On-Chip Photonic Memory and Compute Systems

Download (5.58 kB)
preprint
posted on 2025-03-27, 16:00 authored by Md Abdullah-Al Kaiser, Sugeet Sunder, Clynn Mathew, Michal Rakowski, Ajey P. Jacob, Akhilesh R. Jaiswal
In this work, we propose a novel differential photonic static random access memory (pSRAM) bitcell design using fabrication-friendly photonic components. The proposed pSRAM overcomes the key limitations of traditional electrical SRAMs, which struggle with speed and power efficiency due to increasing bitline/wordline capacitance and interconnect resistance associated with long electrical wires as technology scales. By utilizing cross-coupled micro-ring resonators and differential photodiode structures, along with optical waveguides instead of traditional wordlines and bitlines, our pSRAM exhibits high-speed, and energy-efficient performance. The pSRAM bitcell demonstrates a read/write speed of 40 GHz, with a switching (static) energy consumption of approximately 0.6 pJ (0.03 pJ) per bit and a footprint of 330x290 um^2 using the GlobalFoundries 45SPCLO process node. These bitcells can be arranged into a 2D memory array, enabling large-scale, on-chip photonic memory subsystems ideal for high-speed memory, data processing and computing applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC