Optica Open
Browse

Design of two-dimensional reflective imaging systems: An approach based on inverse methods

Download (5.58 kB)
preprint
posted on 2023-12-02, 17:00 authored by Sanjana Verma, Martijn J. H. Anthonissen, Jan H. M. ten Thije Boonkkamp, Wilbert L. IJzerman
Imaging systems are inherently prone to aberrations. We present an optimization method to design two-dimensional freeform reflectors that minimize aberrations for various parallel ray beams incident on the optical system. We iteratively design reflectors using inverse methods from non-imaging optics and optimize them to obtain a system that produces minimal aberrations. This is done by minimizing a merit function that quantifies aberrations and is dependent on the energy distributions at the source and target of an optical system, which are input parameters essential for inverse freeform design. The proposed method is tested for two configurations: a single-reflector system and a double-reflector system. Classical designs consisting of aspheric elements are well-known for their ability to minimize aberrations. We compare the performance of our freeform optical elements with classical designs. The optimized freeform designs outperform the classical designs in both configurations.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC