Optica Open
Browse

Designing of strongly confined short-wave Brillouin phonons in silicon waveguide periodic lattices

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:51 authored by Roberto O. Zurita, Gustavo S. Wiederhecker, Thiago P. Mayer Alegre
We propose a feasible waveguide design optimized for harnessing Stimulated Brillouin Scattering with long-lived phonons. The design consists of a fully suspended ridge waveguide surrounded by a 1D phononic crystal that mitigates losses to the substrate while providing the needed homogeneity for the build-up of the optomechanical interaction. The coupling factor of these structures was calculated to be 0.54 (W.m)$^{-1}$ for intramodal backward Brillouin scattering with its fundamental TE-like mode and 4.5(W.m)$^{-1}$ for intramodal forward Brillouin scattering. The addition of the phononic crystal provides a 30 dB attenuation of the mechanical displacement after only five unitary cells, possibly leading to a regime where the acoustic losses are only limited by fabrication. As a result, the total Brillouin gain, which is proportional to the product of the coupling and acoustic quality factors, is nominally equal to the idealized fully suspended waveguide.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC