Optica Open
Browse
- No file added yet -

Detecting mid-infrared light by molecular frequency upconversion with dual-wavelength hybrid nanoantennas

Download (5.58 kB)
preprint
posted on 2023-01-11, 23:13 authored by Angelos Xomalis, Xuezhi Zheng, Rohit Chikkaraddy, Zsuzsanna Koczor-Benda, Ermanno Miele, Edina Rosta, Guy A E Vandenbosch, Alejandro Martínez, Jeremy J Baumberg
Coherent interconversion of signals between optical and mechanical domains is enabled by optomechanical interactions. Extreme light-matter coupling produced by confining light to nanoscale mode volumes can then access single mid-infrared (MIR) photon sensitivity. Here we utilise the infrared absorption and Raman activity of molecular vibrations in plasmonic nanocavities to demonstrate frequency upconversion. We convert {\lambda}~10 {\mu}m incoming light to visible via surface-enhanced Raman scattering (SERS) in doubly-resonant antennas that enhance upconversion by >10^10. We show >200% amplification of the SERS antiStokes emission when a MIR pump is tuned to a molecular vibrational frequency, obtaining lowest detectable powers ~1 {\mu}W/{\mu}m^2 at room temperature. These results have potential for low-cost and large-scale infrared detectors and spectroscopic techniques, and bring single-molecule sensing into the infrared

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC