posted on 2024-12-26, 17:00authored byJorge Silva, Martin Plöschner, Karl Bertling, Mukund Ghantala, Tim Gillespie, Jari Torniainen, Jeremy Herbert, Yah Leng Lim, Thomas Taimre, Xiaoqiong Qi, Bogdan C. Donose, Tao Zhou, Hoi-Shun Lui, Dragan Indjin, Yingjun Han, Lianhe Li, Alexander Valavanis, Edmund H. Linfield, A. Giles Davies, Paul Dean, Aleksandar D. Rakić
Terahertz imaging holds great potential for non-destructive material inspection, but practical implementation has been limited by resolution constraints. In this study, we present a single-pixel THz imaging system based on a confocal microscope architecture, utilising a quantum cascade laser as both transmitter and phase-sensitive receiver. Our approach integrates laser feedback interferometry detection to achieve a two-fold improvement in lateral resolution and a two-order-of-magnitude enhancement in axial resolution over conventional imaging through precise interferometric phase measurements. This translates to a lateral resolution near $\lambda/2$ and a depth of focus better than $\lambda/5$, significantly outperforming traditional confocal systems. The system can produce a 0.5 Mpixel image in under two minutes, surpassing both raster-scanning single-pixel and multipixel focal-plane array-based imagers. Coherent operation enables simultaneous amplitude and phase image acquisition, and a custom visualisation method links amplitude to image saturation and phase to hue, enhancing material characterisation. A 3D tomographic analysis of a silicon chip reveals subwavelength features, demonstrating the system's potential for high-resolution THz imaging and material analysis. This work sets a new benchmark for THz imaging, overcoming key challenges and opening up transformative possibilities for non-destructive material inspection and characterisation.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.