Optica Open
Browse

Deterministic printing and heterointegration of single colloidal quantum dot photon sources

Download (5.58 kB)
preprint
posted on 2025-01-10, 17:00 authored by Gregory G. Guymon, Hao A. Nguyen, David Sharp, Tommy Nguyen, Henry Lei, David S. Ginger, Kai-Mei C. Fu, Arka Majumdar, Brandi M. Cossairt, J. Devin MacKenzie
Single nanoparticles are essential building blocks for next-generation quantum photonic technologies, however, scalable and deterministic heterointegration strategies have remained largely out of reach. Here, we present a new electrohydrodynamic (EHD) printing model that exploits nanoscale dielectrophoretics to precisely print single colloidal quantum dots (QDs) with accuracies allowing for fully-additive nanoscale photonics integration. Using colossal-shelled QDs solubilized in apolar solvents, this method overcomes continuum fluid surface energetics and stochastic limitations, achieving selective extraction and deposition of individual QDs at sub-zeptoliter volumes. Photoluminescence and autocorrelation function (g(2)) measurements confirm nanophotonic cavity-QD integration and the first single-photon emission from printed QDs. This additive, zero-waste nanomanufacturing process offers a scalable, sustainable pathway for heterointegrating nanomaterials down to the single particle level.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC