Optica Open
Browse

Development of polar nematic fluids with giant-\k{appa} dielectric properties

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:03 authored by Jinxing Li, Hiroya Nishikawa, Junichi Kougo, Junchen Zhou, Shuqi Dai, Wentao Tang, Xiuhu Zhao, Yuki Hisai, Mingjun Huang, Satoshi Aya
Super-high-\k{appa} materials that exhibit exceptionally high dielectric permittivity are recognized as potential candidates for a wide range of next-generation photonic and electronic devices. Generally, the high dielectricity for achieving a high-\k{appa} state requires a low symmetry of materials so that most of the discovered high-\k{appa} materials are symmetry-broken crystals. There are scarce reports on fluidic high-\k{appa} dielectrics. Here we demonstrate a rational molecular design, supported by machine-learning analyses, that introduces high polarity to asymmetric molecules, successfully realizing super-high-\k{appa} fluid materials (dielectric permittivity, {\epsilon} > 104) and strong second harmonic generation with macroscopic spontaneous polar ordering. The polar structures are confirmed to be identical for all the synthesized materials. Our experiments and computational calculation reveal the unique orientational structures coupled with the emerging polarity. Furthermore, adopting this strategy to high-molecular-weight systems additionally extends the novel material category from monomer to polar polymer materials, creating polar soft matters with spontaneous symmetry breaking.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC