Optica Open
Browse

Differential absorption ozone Lidar with 4H-SiC single-photon detectors

Download (5.58 kB)
preprint
posted on 2024-11-09, 17:00 authored by Xian-Song Zhao, Chao Yu, Chong Wang, Tianyi Li, Bo Liu, Hai Lu, Rong Zhang, Xiankang Dou, Jun Zhang, Jian-Wei Pan
Differential absorption Lidar (DIAL) in the ultraviolet (UV) region is an effective approach for monitoring tropospheric ozone. 4H-SiC single-photon detectors (SPDs) are emergent devices for UV single-photon detection. Here, we demonstrate a 4H-SiC SPD-based ozone DIAL. We design and fabricate the 4H-SiC single-photon avalanche diode with a beveled mesa structure and optimized layer thickness. An active quenching circuit with a quenching time of 1.03 ns is developed to significantly mitigate the afterpulsing effect while enhancing the maximum count rate. After characterization, the SPD exhibits excellent performance with a photon detection efficiency of 16.6% at 266 nm, a dark count rate of 138 kcps, a maximum count rate of 13 Mcps, and an afterpulse probability of 2.7% at room temperature. Then, we apply two 4H-SiC SPDs in an ozone DIAL. The measured ozone concentrations at altitudes of 1-3.5 km agree well with the results of a commercial ozone DIAL. Our work provides an alternative solution for general UV Lidar applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC