Optica Open
Browse

Dirac fermion optics and directed emission from single- and bilayer graphene cavities

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:21 authored by Jule-Katharina Schrepfer, Szu-Chao Chen, Ming-Hao Liu, Klaus Richter, Martina Hentschel
High-mobility graphene hosting massless charge carriers with linear dispersion provides a promising platform for electron optics phenomena. Inspired by the physics of dielectric optical micro-cavities where the photon emission characteristics can be efficiently tuned via the cavity shape, we study corresponding mechanisms for trapped Dirac fermionic resonant states in deformed micro-disk graphene billiards and directed emission from those. In such graphene devices a back-gate voltage provides an additional tunable parameter to mimic different effective refractive indices and thereby the corresponding Fresnel laws at the boundaries. Moreover, cavities based on single-layer and double-layer graphene exhibit Klein- and anti-Klein tunneling, respectively, leading to distinct differences with respect to dwell times and resulting emission profiles of the cavity states. Moreover, we find a variety of different emission characteristics depending on the position of the source where charge carriers are fed into the cavites. Combining quantum mechanical simulations with optical ray tracing and a corresponding phase-space analysis, we demonstrate strong confinement of the emitted charge carriers in the mid field of single-layer graphene systems and can relate this to a lensing effect. For bilayer graphene, trapping of the resonant states is more efficient and the emission characteristics do less depend on the source position.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC