Optica Open
Browse

Direct evidence of terahertz emission arising from anomalous Hall effect

Download (5.58 kB)
preprint
posted on 2023-02-17, 17:01 authored by V. Mottamchetty, P. Rani, R. Brucas, A. Rydberg, P. Svedlindh, R. Gupta
A detailed understanding of the different mechanisms being responsible for terahertz (THz) emission in ferromagnetic (FM) materials will aid in designing efficient THz emitters. In this report, we present direct evidence of THz emission from single layer Co$_{0.4}$Fe$_{0.4}$B$_{0.2}$ (CoFeB) FM thin films. The dominant mechanism being responsible for the THz emission is the anomalous Hall effect (AHE), which is an effect of a net backflow current in the FM layer created by the spin-polarized current reflected at the interfaces of the FM layer. The THz emission from the AHE-based CoFeB emitter is optimized by varying its thickness, orientation, and pump fluence of the laser beam. Results from electrical transport measurements show that skew scattering of charge carriers is responsible for the THz emission in the CoFeB AHE-based THz emitter.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC