Optica Open
Browse
arXiv.svg (5.58 kB)

Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:26 authored by O. Jamadi, E. Rozas, G. Salerno, M. Milićević, T. Ozawa, I. Sagnes, A. Lemaître, L. Le Gratiet, A. Harouri, I. Carusotto, J. Bloch, A. Amo
We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n=0 and n=1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton-polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC