Optica Open
Browse
- No file added yet -

Direct optical excitation of an NV center via a nanofiber Bragg-cavity: A theoretical simulation

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:34 authored by Toshiyuki Tashima, Hideaki Takashima, Shigeki Takeuchi
Direct optical excitation of a nitrogen-vacancy (NV) center in nanodiamond by light via a nanofiber is of interest for all-fiber-integrated quantum applications. However, the background light induced by the excitation light via the nanofiber is problematic as it has the same optical wavelength as the emission light from the NV center. In this letter, we propose using a nanofiber Bragg cavity to address this problem. We numerically simulate and estimate the electric field of a nanodiamond induced by excitation light applied from an objective lens on a confocal microscope system, a nanofiber, and nanofiber Bragg-cavities (NFBCs). We estimate that by using a nanofiber, the optical excitation intensity can be decreased by roughly a factor of 10 compared to using an objective lens, while for an NFBC with a grating number of 240 (120 for one side) on a nanofiber the optical excitation intensity can be significantly decreased by roughly a factor of 100. Therefore, it is expected that the background light inside a nanofiber can be significantly suppressed.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC