Optica Open
Browse

Dispersion and Thickness Control in Evaporation-induced Self-Assembly of Opal Photonic Crystals

Download (5.58 kB)
preprint
posted on 2023-07-08, 04:03 authored by Alex Grant, Alex Lonergan, Colm O'Dwyer
Opals are naturally occurring photonic crystals which can be formed easily using low-cost self-assembly methods. While the optical behaviour of opals has received significant attention over the last number of decades, there is limited information on the effect of crystal thickness on the optical properties they display. Here, the relationship between volume fraction and crystal thickness is established with an evaporation-induced self-assembly (EISA) method of formation. The extent to which thickness can be used to manipulate the optical properties of the crystals is explored, focusing on the change in the photonic band gap (PBG). Microscopical structural characterization and angle-resolved transmission spectroscopy are used to examine the quality of the photonic crystals formed using different volume fractions of polystyrene spheres, with thicknesses up to 37 layers grown from volume fractions of 0.125%. This work provides a direct correlation between sphere solution volume fraction and crystal thickness, and the associated optical fingerprint of opal photonic crystals. Maximum thickness is examined, which is shown to converge to a narrow range over several evaporation rates. We identify the criteria required to achieve thickness control in relatively fast evaporation induced self-assembly while maintaining structural quality, and the change to the spectroscopic signature to the (111) stopband and higher order (220) reflections, under conditions where a less ordered photonic crystals are formed.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC