Optica Open
Browse

Dispersive coupling between MoSe2 and a zero-dimensional integrated nanocavity

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:43 authored by David Rosser, Dario Gerace, Yueyang Chen, Yifan Liu, James Whitehead, Albert Ryou, Lucio C. Andreani, Arka Majumdar
Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step for the development of semiconductor quantum optics. Here we demonstrate a coherent interaction between the neutral exciton in monolayer MoSe2 and a zero-dimensional, small mode volume nanocavity. This is observed through a dispersive shift of the cavity resonance when the exciton-cavity detuning is decreased, with an estimated exciton-cavity coupling of ~4.3 meV and a cooperativity of C~3.4 at 80 Kelvin. This coupled exciton-cavity platform is expected to reach the strong light-matter coupling regime (i.e., with C~380) at 4 Kelvin for applications in quantum or ultra-low power nanophotonics.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC