Optica Open
Browse

Doping-driven topological polaritons in graphene/{\alpha}-MoO3 heterostructures

Download (5.58 kB)
Version 2 2023-06-08, 12:51
Version 1 2023-01-10, 02:25
preprint
posted on 2023-06-08, 12:51 authored by Hai Hu, Na Chen, Hanchao Teng, Renwen Yu, Yunpeng Qu, Jianzhe Sun, Mengfei Xue, Debo Hu, Bin Wu, Chi Li, Jianing Chen, Mengkun Liu, Zhipei Sun, Yunqi Liu, Peining Li, Shanhui Fan, F. Javier García de Abajo, Qing Dai
Controlling the charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties in natural materials. This approach could be used to induce topological transitions in the optical response of photonic systems. Here, we predict a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and $\alpha$-phase molybdenum trioxide ($\alpha$-MoO3). By chemically changing the doping level of graphene, we experimentally demonstrate that the contour topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, by changing the substrate medium for the heterostructure, the dispersion contour can be further engineered into a rather flattened shape at the topological transition, thus supporting tunable polariton canalization and providing the means to locally control the topology. We demonstrate this idea to achieve extremely subwavelength focusing by using a 1.2-$\mu$m-wide silica substrate as a negative refraction lens. Our findings open a disruptive approach toward promising on-chip applications in nanoimaging, optical sensing, and manipulation of nanoscale energy transfer.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC