Optica Open
Browse

Dressed bound states and non-Markovian dynamics with a whispering-gallery-mode microcavity coupled to a two-level atom and a semi-infinite photonic waveguide

Download (5.58 kB)
preprint
posted on 2025-04-17, 16:01 authored by J. Y. Sun, C. Cui, Y. F. Li, Shuang Xu, Cheng Shang, Yan-Hui Zhou, H. Z. Shen
We investigate the dressed bound states (DBS) in an open cavity with a whispering-gallery-mode microring coupled to a two-level atom and a waveguide with a mirror at the right end. We demonstrate that the non-Hermiticity of an open cavity facilitates the formation of the DBS, which consists of the vacancy-like DBS and Friedrich-Wintgen DBS. By deriving analytical conditions for these DBS, we show that when a two-level atom couples to the standing-wave mode that corresponds to a node of the photonic wave function the vacancy-like DBS occur, which are characterized by null spectral density at cavity resonance. Conversely, Friedrich-Wintgen DBS can be realized by continuously adjusting system parameters and indicated by the disappearance of the Rabi peak in the emission spectrum, which is a distinctive feature in the strong-coupling regime. Moreover, we extend our analysis to the non-Markovian regime and find that our results are consistent with those obtained under the Markovian approximation in the wideband limit. In the non-Markovian regime, we analyze DBS for both zero and non-zero accumulated phase factors. For zero accumulated phase factors, the non-Markovian regime exhibits higher peak values and longer relaxation times for vacancy-like DBS compared to the Markovian regime, where the Friedrich-Wintgen DBS are absent in the non-Markovian case. Finally, we establish the correspondence between the energy spectrum and bound state conditions for non-zero accumulated phase factors and analyze the influence of various parameters on non-Markovian bound states. Our work exhibits bound state manipulations through non-Markovian open quantum system, which holds great potential for building high-performance quantum devices for applications such as sensing, photon storage, and nonclassical light generation.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC