posted on 2023-11-30, 18:28authored byHua-Ying Liu, Xiao-Hui Tian, Changsheng Gu, Pengfei Fan, Xin Ni, Ran Yang, Ji-Ning Zhang, Mingzhe Hu, Yang Niu, Xun Cao, Xiaopeng Hu, Gang Zhao, Yan-Qing Lu, Zhenda Xie, Yan-Xiao Gong, Shi-Ning Zhu
The quantum satellite is a cornerstone towards practical free-space quantum network and overcomes the photon loss over large distance. However, challenges still exist including real-time all-location coverage and multi-node construction, which may be complemented by the diversity of modern drones. Here we demonstrate the first drone-based entanglement distribution at all-weather conditions over 200 meters (test field limited), and the Clauser-Horne-Shimony-Holt S-parameter exceeds 2.49, within 35 kg take-off weight. With symmetric transmitter and receiver beam apertures and single-mode-fiber-coupling technology, such progress is ready for future quantum network with multi-node expansion. This network can be further integrated in picture-drone sizes for plug-and-play local-area coverage, or loaded onto high-altitude drones for wide-area coverage, which adds flexibility while connecting to the existing satellites and ground fiber-based quantum network.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.