Optica Open
Browse

Dynamic Spectral fluorescence microscopy via Event-based & CMOS image-sensor fusion

Download (5.58 kB)
preprint
posted on 2024-10-23, 16:00 authored by Richard G. Baird, Apratim Majumder, Rajesh Menon
We present a widefield fluorescence microscope that integrates an event-based image sensor (EBIS) with a CMOS image sensor (CIS) for ultra-fast microscopy with spectral distinction capabilities. The EBIS achieves temporal resolution of $\sim10\thinspace\mu$s ($\sim\thinspace$50,000 frames/s), while the CIS provides diffraction-limited spatial resolution. A diffractive optical element encodes spectral information into a diffractogram, which is recorded by the CIS. The diffractogram is processed using a deep neural network to resolve the fluorescence of two beads, whose emission peaks are separated by only 7 nm and exhibit an 88\% spectral overlap. We validate our microscope by imaging the capillary flow of fluorescent beads, demonstrating a significant advancement in ultra-fast spectral microscopy. This technique holds broad potential for elucidating foundational dynamic biological processes.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC