Optica Open
Browse
- No file added yet -

Dynamic modulation of phonon-assisted transitions in quantum defects in monolayer transition-metal dichalcogenide semiconductors

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:15 authored by Chitraleema Chakraborty, Christopher J. Ciccarino, Prineha Narang
Quantum localization via atomic point defects in semiconductors is of significant fundamental and technological importance. Quantum defects in monolayer transition-metal dichalcogenide semiconductors have been proposed as stable and scalable optically-addressable spin qubits. Yet, the impact of strong spin-orbit coupling on their dynamical response, for example under optical excitation, has remained elusive. In this context, we study the effect of spin-orbit coupling on the electron-phonon interaction in a single chalcogen vacancy defect in monolayer transition metal dichalcogenides, molybdenum disulfide (MoS$_2$) and tungsten disulfide (WS$_2$). From ab initio electronic structure theory calculations, we find that spin-orbit interactions tune the magnitude of the electron-phonon coupling in both optical and charge-state transitions of the defect, modulating their respective efficiencies. This observation opens up a promising scheme of dynamically modulating material properties to tune the local behavior of a quantum defect.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC