posted on 2024-12-14, 17:17authored byRion Morishita, Pradipta Mukherjee, Ibrahim Abd El-Sadek, Tanatchaya Seesan, Tomoko Mori, Atsuko Furukawa, Shinichi Fukuda, Donny Lukmanto, Satoshi Matsusaka, Shuichi Makita, Yoshiaki Yasuno
Dynamic optical coherence tomography (DOCT) statistically analyzes fluctuations in time-sequential OCT signals, enabling label-free and three-dimensional visualization of intratissue and intracellular activities. Current DOCT methods, such as logarithmic intensity variance (LIV) and OCT correlation decay speed (OCDS) have several limitations.Namely, the DOCT values and intratissue motions are not directly related, and hence DOCT values are not interpretable in the context of the tissue motility. We introduce a new DOCT algorithm that provides more direct interpretation of DOCT in the contexts of dynamic scatterer ratio and scatterer speed in the tissue.The detailed properties of the new and conventional DOCT methods are investigated by numerical simulations, and the experimental validation with in vitro and ex vivo samples demonstrates the feasibility of the new method.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.