Optica Open
Browse

Dynamic optical coherence tomography algorithm for label-free assessment of swiftness and occupancy of intratissue moving scatterers

Download (5.58 kB)
preprint
posted on 2024-12-14, 17:17 authored by Rion Morishita, Pradipta Mukherjee, Ibrahim Abd El-Sadek, Tanatchaya Seesan, Tomoko Mori, Atsuko Furukawa, Shinichi Fukuda, Donny Lukmanto, Satoshi Matsusaka, Shuichi Makita, Yoshiaki Yasuno
Dynamic optical coherence tomography (DOCT) statistically analyzes fluctuations in time-sequential OCT signals, enabling label-free and three-dimensional visualization of intratissue and intracellular activities. Current DOCT methods, such as logarithmic intensity variance (LIV) and OCT correlation decay speed (OCDS) have several limitations.Namely, the DOCT values and intratissue motions are not directly related, and hence DOCT values are not interpretable in the context of the tissue motility. We introduce a new DOCT algorithm that provides more direct interpretation of DOCT in the contexts of dynamic scatterer ratio and scatterer speed in the tissue.The detailed properties of the new and conventional DOCT methods are investigated by numerical simulations, and the experimental validation with in vitro and ex vivo samples demonstrates the feasibility of the new method.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC